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We will discuss induction and probability in that order, aiming to bring out the deep 

interconnections between the two topics; we will close with a brief overview of cutting-edge 

research that combines them. 

1. Induction: some preliminaries 

Arguably, Hume's greatest single contribution to contemporary philosophy of science has 

been the problem of induction (1739). Before attempting its statement, we need to spend a few 

words identifying the subject matter of this corner of epistemology. At a first pass, induction 

concerns ampliative inferences drawn on the basis of evidence (presumably, evidence acquired 

more or less directly from experience)—that is, inferences whose conclusions are not (validly) 

entailed by the premises. Philosophers have historically drawn further distinctions, often 

appropriating the term “induction” to mark them; since we will not be concerned with the 

philosophical issues for which these distinctions are relevant, we will use the word “inductive” in 

a catch-all sense synonymous with “ampliative”. But we will follow the usual practice of 

choosing, as our paradigm example of inductive inferences, inferences about the future based on 

evidence drawn from the past and present.  

A further refinement is more important. Opinion typically comes in degrees, and this fact 

makes a great deal of difference to how we understand inductive inferences. For while it is often 

harmless to talk about the conclusions that can be rationally believed on the basis of some 



evidence, the force of any given evidence is more accurately measured by noting its effects on 

the rational assignment of degrees of belief. The usual assumption—one that directly connects 

the two topics of this chapter—is that rationally warranted degree of belief can be modeled as a 

species of probability, inductive inference itself being modeled by some rule for changing 

probabilities in light of evidence. 

The strength of the support that some evidence gives some hypothesis is not measured by the 

degree of belief in the hypothesis that is warranted in light of that evidence. There is widespread 

disagreement among philosophers of science as to how exactly it should be measured (see Milne 

1996); but all parties agree that the notion is an essentially comparative one, in that it depends 

not only on how likely an hypothesis is, in light of the given evidence, but also on how likely it 

would be, in light of different evidence. 

2. The first problem of induction 

One serious problem that inductive inferences present us with is that of saying with any 

precision what distinguishes the good ones from the bad ones. We will get to that problem 

shortly, and because we take it up second will call it the “second problem of induction”. It should 

be distinguished from the first problem, which is that of saying why the 'good' ones deserve this 

label. 

For various reasons (whose elucidation space does not permit), we think it is best to 

formulate this problem as a problem about settling a conflict between two rival inductive 

methods—rival sets of rules for adjusting degrees of belief in light of evidence. Let us personify 

two such rivals in the form of Billy and Suzy, two friends. Suzy is a paragon of cognitive virtue: 

she always evaluates the impact of evidence on hypotheses in accordance with the “right” 

inductive principles. Billy evaluates the force of evidence in accordance with different principles, 



a fact which shows up in the following bizarre behavior: He regularly sticks his fingers in light 

sockets, always getting a nasty shock when he does so. To be clear, Billy doesn’t like these 

shocks at all. It’s just that each time, his inductive methods lead him to the conclusion, given the 

evidence available to him, that it is overwhelmingly likely that the sensation will be exquisitely 

pleasant. Billy and Suzy disagree about these predictions, and since—let us stipulate—they have 

exactly the same evidence, their disagreement traces to the different principles they adhere to in 

evaluating the force of such evidence. Is it possible to provide any compelling argument for the 

conclusion that the inductive principles to which Suzy adheres are rationally superior to Billy’s? 

There are two relevant parties here, and we need to consider the possibility that there is an 

argument compelling to one but not the other. Let us stipulate that such an argument must make 

use of acceptable premises that do not beg the question against the party to be compelled. We 

will take it that such premises will at least include all propositions detailing the evidence 

available to Billy and Suzy. Let us further stipulate that the premises must, in some sense, 

support the given conclusion, and that they can do so in one of only two ways: either they entail 

the conclusion that Suzy’s inductive principles are rationally preferable to Billy’s, or they 

provide some measure of inductive support for this conclusion. 

It might seem that no argument of the first kind that would be compelling to either Billy or 

Suzy is possible, especially if we limit our attention to arguments that proceed only from the 

available evidence, and that attempt to establish the superiority of Suzy’s inductive methods over 

Billy’s by way of the intermediate conclusion that her methods will in the future yield correct 

predictions more often than Billy’s. Here, the point, familiar since Hume, that the past places no 

logical constraints on the future renders such an intermediate conclusion inaccessible. But there 

is always the possibility of finding additional, non-question-begging premises, or of finding 



some other route to the conclusion—loopholes that, as we’ll see below, Reichenbach’s 

“pragmatic” justification of induction attempts to exploit. 

Moreover, there is at least one clear way in which such an argument could be constructed: 

namely, if Billy’s inductive rules undermine themselves by predicting, given the evidence, that 

they will systematically issue false predictions in the future. If Suzy’s principles do not 

undermine themselves in this way, then they will clearly be rationally preferable; what’s more, 

this conclusion validly follows from premises perfectly acceptable to both. Still, there is little 

point in hoping for such an argument, as it turns out to be far too easy—and costless—to 

construct inductive methods that are immune from self-undermining.1 So we might as well build 

into our description of the Billy/Suzy scenario that Billy is adhering to just such a method. 

3. The inductive justification of induction 

What then of the possibility of a compelling inductive argument? None could succeed in 

convincing Billy. For either the evidence available to Billy inductively warrants, by his lights, 

the conclusion that Suzy’s inductive methods are preferable to his own, or it doesn't. But if the 

evidence warrants this conclusion then his principles undermine themselves, and we have 

stipulated that they are immune from such self-undermining. So consider whether some 

inductive argument could be produced that would provide Suzy with compelling grounds for 

holding her inductive methods to be rationally preferable to Billy’s. 

To give her the best possible case, let us suppose that Suzy’s own inductive principles 

strongly endorse, in light of the evidence available to her, the conclusion that those very 

                                                 

1 Space prevents us from giving the details, but the key idea is to build into one’s inductive principles a version 

of van Fraassen’s Reflection Principle, which we will discuss below. 



principles will yield wildly successful predictions in the future, whereas Billy’s will yield an 

unbroken string of falsehoods. It seems, then, that she has a compelling and powerful argument 

for the target conclusion.  

But there has been a bit of sleight of hand. The problem is not that her “inductive justification 

of induction” is circular or question-begging, for given that she is its target it manifestly isn’t. 

(See van Cleve 1984; any lingering sense that it is can be explained away by noting that no such 

inductive argument could convince Billy.) Rather, we need to remember that strength of 

inductive support is a comparative notion. In the case at hand, the “track record” of Suzy’s 

inductive methods provides, by the lights of these methods, extra reason to have faith in them 

only to the extent that other track records were possible that would have yielded a more 

pessimistic prediction—i.e., only if it was at least possible for the evidence to produce a self-

undermining verdict. But it is prima facie quite desirable to adhere to an inductive method that is 

immune from the possibility of self-undermining, particularly given that this is both easy and 

costless to do. Assuming that Suzy is following such a method, the track record of its successes, 

however spectacular, contributes nothing at all to the case in its favor.  

In any case, even at the beginning of inquiry—before any evidence has been amassed—there 

remains just as clear and intuitive a difference in the rational acceptability of Suzy’s and Billy’s 

inductive methods, one which need wait upon no “supporting evidence” in order to become 

visible: The difference is that hers are superior. Not, then, because the evidence favors them.  

4. The pragmatic justification  

It seems transparent that no valid argument could be produced whose premises are obviously 

correct and non-question-begging and whose conclusion is that our particular inductive practices 



are rationally warranted. Famously, Reichenbach (1938 and 1949) attempts to produce just such 

an argument.  

The more formal version of the argument seeks to justify the use of the “straight rule” in 

making predictions about the limiting relative frequency of outcomes in an infinitely repeated 

experiment (the rule predicts this limit to equal the frequency observed so far); it has been so 

thoroughly discussed in the literature that we will pass over it (see Salmon 1967). The less 

formal version is more clever, and less talked-about. For the sake of definiteness, let us use the 

label “the scientific method” (SM) as a name for whatever method it is we use—at least, when 

we are at our cognitive best—for drawing inductive conclusions. And let us suppose that we 

have some standard of success for an inductive method—say, that the long-range frequency of 

correct inferences drawn on its basis must be sufficiently high. For any given inductive method, 

there is of course no guarantee that it will succeed in this sense: the world must cooperate, and it 

is a contingent matter whether it will do so. Reichenbach thus grants that we can have no a priori 

guarantee of the success of SM. But he argues that we are “pragmatically” justified in our 

continued adherence to SM, since if any method will succeed, it will. For suppose the world is 

such that some rival method RM will succeed, but SM will not. Well, a central component of SM 

consists in projecting observed regularities into the future, and in a world where RM succeeds, a 

relevant such regularity simply is the pattern of RM’s successes. If, for example, a successful 

method for predicting the future in world w is to consult an oracle, then SM will eventually 

establish that the oracle is reliable—and so SM will itself ultimately yield the advice that one 

should consult the oracle when making predictions. The key claim—that if the world is nice 

enough to allow for the success of some inductive method, then it is nice enough to allow for the 

success of SM—is simply a generalization of this example. So we have a demonstrative 



argument that SM will be successful if any method will; hence, it seems, a demonstrative 

argument that we are rationally warranted in adhering to SM. 

But the example of the oracle is entirely misleading. For a long string of successful 

predictions by such an oracle surely constitutes a very salient regularity. Suppose the success of 

the rival inductive method is not nearly so visible; why should we have any confidence that SM 

will “latch onto” this string of accurate predictions?  

We should have no such confidence if the following condition holds: For every proposition A 

about the future, there are rival inductive methods that have been highly successful, and equally 

successful, in the past, but that disagree widely as to the likely truth of A (given the available 

evidence). If that condition is met, then the argument for the crucial premise fails disastrously—

for which string of successes should SM latch onto? It is easy to see what went wrong: the 

argument involved a bit of misdirection in getting is to agree implicitly that SM was, in the 

imagined world w, up against just one rival RM. More plausible is that it would be up against a 

battery of rivals so extensive that they fail as a group to agree on any prediction of substance. It 

is wishful thinking to suppose that SM could somehow pick the “winner”. 

5. Hume’s ‘skeptical solution’ 

Hume’s own “skeptical” solution to his problem of induction foreshadowed an important 

movement in contemporary epistemology, which seeks to “naturalize” the subject (Kornblith 

1985). For Hume took it that no rational basis for induction is possible, while adding that 

perfectly legitimate empirical psychological questions remain about how exactly it is that 

deliberating agents draw inductive conclusions from evidence. Hume’s own answer emphasized 

the central role of the apparently brute psychological disposition he called “custom” or “habit”; 

contemporary fans of this kind of naturalized approach to inductive epistemology could 



presumably be expected to draw on much more sophisticated theories of human cognitive 

psychology.  

A serious worry is that it is unclear that the naturalizing move in epistemology leaves room 

for a legitimate, coherent sub-discipline of normative epistemology, a discipline that seeks to 

articulate the principles according to which we ought to form our beliefs. That is unfortunate, 

since our natural or “untutored” cognitive abilities in the inductive domain are notoriously and 

systematically unreliable, particularly when we’re in a situation that forces us to attend 

sensitively to the probabilistic bearing of evidence on hypotheses (see Kahneman, Slovic, and 

Tversky 1982). It would seem to require careful a priori reflection to distinguish rational 

inductive inferences from mistakes. At the very least, the defender of a purely naturalized 

epistemology of induction owes us an account of how else we might systematically identify and 

guard against inductive error. 

6. Popper’s falsificationism  

Popper (1968) argues for a different way of dismissing the problem of induction: while 

agreeing with Hume that no rational justification of induction can be found, he insists that this 

result is innocuous, simply because induction forms no part of the practice of science. According 

to Popper, scientists propose “conjectures”, and then subject these conjectures to severe 

observational tests in an effort to falsify them. He claims that we are never rationally warranted 

in considering such an hypothesis to be probable, given that it has passed such tests. And since, 

according to the simplest version of falsificationism, deductive relations are all that we need 

attend to in order to check that an hypothesis has been refuted by some evidence, the problem of 

induction poses no threat to the rationality of scientific practice. 



As a descriptive claim about what scientists, qua scientists, actually do—let alone about what 

they believe about what they do—Popper’s view strikes us as absurd. But even as a normative 

claim it fares little better. The simplest and most devastating point was nicely emphasized by 

Putnam (1974): Popper seems willfully blind to the fact that we use evidence from the past and 

present as a basis for making practical decisions, decisions whose rationality is hostage to the 

rationality of the inferences drawn about their likely consequences on the basis of the given 

evidence. What would Popper say, for example, about the disagreement between Billy and Suzy? 

That Billy’s behavior is somehow rationally permissible, even in light of the extensive and 

painful evidential record? Even were it understood merely as a claim about the rationality of 

belief, falsificationism would be unpalatable; but belief and action are too inextricably linked to 

sustain such an understanding. The consequences of the position for the rationality of decision 

provide it, ironically enough, with a decisive refutation. 

7. The dogmatic response 

The final approach to the first problem of induction that we will consider we call the 

“dogmatic” response—not as an insult, but because the word nicely summarizes its main 

features. For according to the dogmatic response, induction is perfectly rational—certain ways of 

adjusting degrees of belief in the light of evidence are rationally warranted, and certain other 

ways are irrational—but absolutely no justification can be given of this claim, not even a 

justification of the kind that would only be compelling to the likes of Suzy (see Strawson 1952). 

It is rather that the fact that certain inductive inferences are rational and certain others irrational 

(and perhaps still others neither rational nor irrational) is a brute epistemological fact, incapable 

of further philosophical explanation or defense.  



The principal merits of the view are clear enough. It allows us to maintain, contra Hume and 

other skeptics about induction, a vigorous distinction between rational and irrational inductive 

methods and inferences, and it acquires at least some measure of plausibility from the dismal 

failure of more ambitious attempts to give a justification of induction. Still, the view should only 

be seen as a kind of philosophical last resort. For there are too many interesting questions about 

which the dogmatic response falls silent. Notably, whereas any attempt to provide a substantive 

justification of induction can be expected, to the extent that it succeeds, also to provide insights 

into what distinguishes good from bad inductive inferences, the dogmatic response is hopeless in 

this regard. And, as noted above, the problem of providing a clear explication of the distinction 

between rational ('good') and irrational ('bad') inductive inferences is a deep and central one in its 

own right. We turn now to a brief discussion of some of the main philosophical approaches in 

this area. 

8. The second problem of induction: Syntactic approaches 

Traditionally, logic aims to distinguish valid from invalid arguments by virtue of the 

syntactic form of the premises and conclusion (e.g., any argument that has the form p and q, 

therefore p is valid in virtue of this form). But the distinction between valid and invalid is not 

fine enough: after all, many invalid arguments are perfectly good, in the sense that the premises 

provide strong inductive support for the conclusion. Carnap (1950) described this relation of 

support as the logical probability that an argument’s conclusion is true, given that its premises 

are true—hoping that logic, more broadly conceived, could give it a syntactic analysis. We will 

discuss Carnap’s approach in more detail below. Other, less ambitious approaches tried to find 

syntactic criteria for “qualitative confirmation”—criteria, that is, that would identify at least 



some instances in which evidence raised the probability of an hypothesis, to at least some degree. 

(See Hempel 1945a,b for an excellent overview of work in this area.) 

These attempts to design a “logic” of induction on the model of formal deductive logic did 

not succeed. The decisive problem concerns the language-dependence that any such “logic” 

would have to exhibit. Consider, for example, a language used to represent the outcomes of 

random draws from an urn filled with colored balls; let the language contain the color predicates 

“blue” and “green”, and also, in the spirit of Goodman (1983), the predicate “grue”, where “x is 

grue at draw i” is equivalent to “x is green at draw i and i ≤ 1,000,000 or x is blue at draw i and i 

> 1,000,000”. Surely the “logical strength” of the argument, “the first million draws are green, 

therefore the next draw will be green” is greater than 1/2; if syntax is all that matters, then so too 

is the logical strength of the argument, “the first million draws are grue, therefore the next draw 

will be grue”. But the two conclusions contradict each other, and so cannot both receive 

probability greater than 1/2. 

One might try to specify a canonical language, to sentences of which the syntactic rules, 

whatever they are, are meant to apply—a language free of such monstrosities as “grue”. But not 

only does traditional logic find no need for such a procedure, it is also extraordinarily difficult to 

see how one could carry it out, at least if we want to analyze the inductive strength of any 

argument of real interest. By the middle of the 17th century, the available evidence strongly 

supported Keplerian over Ptolemaic astronomy; but what would be the canonical language in 

which to translate this evidence and these hypotheses, in order to analyze the differential support 

syntactically? 



9. The second problem: Modest probabilism 

One might agree with Carnap that induction should be modeled using the tools of probability 

theory, while denying that syntactic analysis alone can provide or even constrain the values of 

the relevant probability function. And indeed, what we will call “modest probabilism” about 

induction and confirmation has become increasingly popular since the demise of logical 

empiricism. We call this approach “probabilism” because it sees the inductive support or degree 

of confirmation that evidence E gives hypothesis H as measured by somehow comparing P(H), 

the probability of H, with P(H|E), the conditional probability of H, given E. (We will have more 

to say about these quantities shortly.) Perhaps this inductive support is measured by the 

difference P(H|E) – P(H); perhaps by the ratio P(H|E)/P(H); perhaps in some other way. (See 

Good 1985.) But the approach is modest to the extent that it is agnostic about the nature or 

source of the “confirmation-probability” in question. Its agnosticism notwithstanding, modest 

probabilism is able to achieve some remarkable successes. For example, it explains straightaway 

the success (such as it is) of the hypothetico-deductive account of confirmation. For if H implies 

E, and if P(E) < 1, then it follows at once that P(H|E) > P(H) (for this condition is equivalent to 

P(E|H) > P(E)). More interestingly, modest probabilism neatly explains away the Raven’s 

Paradox, and can be easily adapted to illuminate the confirmation of hypotheses that are 

themselves probabilistic (See Earman 1992 for a fuller discussion.) 

Partly in order to flesh out the resources of and problems for this probabilistic approach, we 

will now switch gears slightly, and take up the second of our topics: an investigation of 

probability theory and the most important attempts at explicating its conceptual foundations. We 

begin with an overview of the widely accepted mathematical foundations. 



 

10. Kolmogorov’s axiomatization 

Probability theory was inspired by games of chance in 17th century France and inaugurated 

by the Fermat-Pascal correspondence. However, its axiomatization had to wait until 

Kolmogorov’s classic book (1933). Let Ω be a non-empty set (‘the universal set’). A sigma-field 

(or sigma-algebra) on Ω is a set F of subsets of Ω that has Ω as a member, and that is closed 

under complementation (with respect to Ω) and countable union. Let P be a function from F  to 

the real numbers obeying: 

1. P(A) ≥ 0 for all A ∈ F. 

2. P(Ω) = 1. 

3. P(A ∪ B) = P(A) + P(B) for all A, B ∈ F such that A ∩ B = ∅. 

Call P a probability function, and (Ω, F, P) a probability space.  

We could instead attach probabilities to members of a collection of sentences of a formal 

language, closed under truth-functional combinations. 

It is controversial whether probability theory should include Kolmogorov’s further axiom: 

4. (Continuity) En ↓ Ø implies P(En) → 0 (where En ∈ F ∀n) 

Equivalently, we can replace the conjunction of axioms 3 and 4 with a single axiom: 

3´. (Countable additivity) If {Ai} is a countable collection of (pairwise) disjoint sets, each ∈ 

F, then  

    P(
  n =1

∞

U An) = 
n=1

∞

∑ P(An) 

The conditional probability of X given Y is standardly given by the ratio of unconditional 

probabilities: 



P(X|Y) = 
P(X ↔ Y)

P(Y)   , provided P(Y) > 0. 

We can now prove versions of Bayes’ theorem: 

 

P(A|B) = 
P(B|A).P(A)

P(B)    

   

= 
P(B|A).P(A)

P(B|A).P(A) + P(B|¬A).P(¬A)   

More generally, suppose we have a partition of hypotheses {H1, H2, ..., Hn}, and evidence E. 

Then we have, for each i: 

P(Hi|E) = 
P(E|Hi)P(Hi)

 
j =1

n

∑ P(E|Hj)P(Hj)
 . 

The P(E|Hi) terms are called likelihoods, and the P(Hi) terms are called priors. 

If P(X|Y) = P(X)—equivalently, if P(Y|X) = P(Y); equivalently, if P(X ∩ Y) = P(X)P(Y)—

then X and Y are said to be independent. Two cautions: firstly, the locution ‘X is independent of 

Y’ is somewhat careless, encouraging one to forget that independence is a relation that events or 

sentences bear to a probability function. Secondly, this technical sense of ‘independence’ should 

not be identified unreflectively with causal independence, or any other pretheoretical sense of the 

word, even though such identifications are often made in practice. If P(X|Y) > P(X)—

equivalently, if P(Y|X) > P(Y)—then X and Y are positively correlated. A cornerstone of any 

probabilistic approach to induction is the idea that evidence about the observed is positively 

correlated with various hypotheses about the unobserved. 



We now turn to the so-called ‘interpretations’ of probability. The term is misleading twice 

over. Various quantities that intuitively have nothing to do with ‘probability’ obey 

Kolmogorov’s axioms—for example, length, volume, and mass, each suitably normalized—and 

are thus ‘interpretations’ of it, but not in the intended sense. Conversely, the majority of the most 

influential ‘interpretations’ of P violate countable additivity, and thus are not genuine 

interpretations of Kolmogorov’s full probability calculus at all. Be that as it may, we will drop 

the scare quotes of discomfort from now on. 

12. The classical interpretation 

The classical interpretation, which owes its name to its early and august pedigree, (notably 

the Port-Royal Logic, Arnauld 1662, and Laplace 1814) purports to determine probability 

assignments in the face of no evidence at all, or symmetrically balanced evidence. In such 

circumstances, probability is shared equally among all the possible outcomes, so that the 

classical probability of an event is simply the fraction of the total number of possibilities in 

which the event occurs—a version of the so-called principle of indifference. Unless more is said, 

it is also arguably the interpretation furthest removed from considerations of induction, reflecting 

as it does a certain a prioristic innocence: in typical applications, the number of possibilities, and 

thus the share that each gets of the total probability, remain the same (e.g. 3/6) whatever the 

outcomes in the actual world happen to be. Unfortunately, the classical interpretation can 

apparently yield contradictory results when there is no single privileged set of possibilities, as 

Bertrand (1989) brought out in his paradoxes. Classical probabilities are only finitely additive 

(see de Finetti 1974). 



13. The logical interpretation 

Logical theories of probability retain the classical interpretation’s guiding idea that 

probabilities can be determined a priori by an examination of the space of possibilities. However, 

they generalize it in two important ways: the possibilities may be assigned unequal weights, and 

probabilities can be computed whatever the evidence may be, symmetrically balanced or not. 

Indeed, the logical interpretation, in its various guises, seeks to codify in full generality the 

degree of support or confirmation that a piece of evidence E confers upon a given hypothesis H, 

which we may write as c(H, E). 

Early proponents of logical probability include Keynes (1921), W.E. Johnson (1932), and 

Jeffreys (1939). However, by far the most systematic study of logical probability was by Carnap. 

His formulation of logical probability begins with the construction of a formal language. In 

(1950) he considers a class of very simple languages consisting of a finite number of logically 

independent monadic predicates (naming properties) applied to countably many individual 

constants (naming individuals) or variables, and the usual logical connectives. The strongest 

(consistent) statements that can be made in a given language describe all of the individuals in as 

much detail as the expressive power of the language allows. They are conjunctions of complete 

descriptions of each individual, each description itself a conjunction containing exactly one 

occurrence (negated or unnegated) of each predicate of the language. Call these strongest 

statements state descriptions.  

Any probability measure m(–) over the state descriptions automatically extends to a measure 

over all sentences, since each sentence is equivalent to a disjunction of state descriptions; m in 

turn induces a confirmation function c(–,–): 

c(H, E) = 
m(H & E)

m(E)
 



There are obviously infinitely many candidates for m, and hence c, even for very simple 

languages. Carnap argues for his favored measure “m*” by insisting that the only thing that 

significantly distinguishes individuals from one another is some qualitative difference, not just a 

difference in labeling. A structure description is a maximal set of state descriptions, each of 

which can be obtained from another by some permutation of the individual names. m* assigns 

each structure description equal measure, which in turn is divided equally among their 

constituent state descriptions. It gives greater weight to homogenous state descriptions than to 

heterogeneous ones, thus ‘rewarding’ uniformity among the individuals in accordance with 

putatively reasonable inductive practice. It can be shown that the induced c* allows inductive 

learning from experience—as, annoyingly, do infinitely many other candidate confirmation 

functions. Carnap claims that c* nevertheless stands out for being simple and natural. 

He later generalizes his confirmation function to a continuum of functions cλ. Define a family 

of predicates to be a set of predicates such that, for each individual, exactly one member of the 

set applies, and consider first-order languages containing a finite number of families. Carnap 

(1963) focuses on the special case of a language containing only one-place predicates. He lays 

down a host of axioms concerning the confirmation function c, including those induced by the 

probability calculus itself, various axioms of symmetry (for example, that c(H, E) remains 

unchanged under permutations of individuals, and of predicates of any family), and axioms that 

guarantee undogmatic inductive learning, and long-run convergence to relative frequencies. They 

imply that, for a family {Pn}, n = 1, ..., k , k > 2: 

 cλ (individual s + 1 is Pj, sj of the first s individuals are Pj) = 
sj + λ/k
s + λ ,    

where λ is a positive real number. 



The higher the value of λ, the less impact evidence has: induction from what is observed 

becomes progressively more swamped by a classical-style equal assignment to each of the k 

possibilities regarding individual s + 1. 

Significantly, Carnap’s various axioms of symmetry are hardly logical truths. More seriously, 

we cannot impose further symmetry constraints that are seemingly just as plausible as Carnap’s, 

on pain of inconsistency—see Fine (1973, 202). Goodman taught us: that the future will 

resemble the past in some respect is trivial; that it will resemble the past in all respects is 

contradictory. And we may continue: that a probability assignment can be made to respect some 

symmetry is trivial; that one can be made to respect all symmetries is contradictory. This 

threatens the whole program of logical probability. 

14. Frequency interpretations 

Frequency interpretations can be thought of as elevating a methodological rule for 

induction—the straight rule—to the status of a definition of probability. Empiricist in inspiration, 

and originating with Venn (1876), they identify an event’s probability with the relative frequency 

of events of that type within a suitably chosen reference class. The probability that a given coin 

lands ‘heads’, for example, might be identified with the relative frequency of ‘heads’ outcomes 

in the class of all tosses of that coin. But there is an immediate problem: observed relative 

frequencies can apparently come apart from true probabilities, as when a fair coin that is tossed 

ten times happens to land heads every time. Von Mises (1957) offers a more sophisticated 

formulation based on the notion of a collective, rendered precise by Church (1940): a 

hypothetical infinite sequence of ‘attributes’ (possible outcomes) of a specified experiment, for 

which the limiting relative frequency of any attribute exists, and is the same in any recursively 

specified subsequence. The probability of an attribute A, relative to a collective ω, is then 



defined as the limiting relative frequency of A in ω. Limiting relative frequencies violate 

countable additivity (de Finetti 1974). 

A notorious problem for any version of frequentism is the so-called problem of the single 

case: we sometimes attribute non-trivial probabilities to results of experiments that occur only 

once. The move to hypothetical infinite sequences of trials creates its own problems: There is 

apparently no fact of the matter as to what such a hypothetical sequence would be, nor even what 

its limiting relative frequency for a given attribute would be, nor indeed whether that limit is 

even defined; and the limiting relative frequency can be changed to any value one wants by 

suitably permuting the order of trials. In any case, the empiricist intuition that facts about 

probabilities are simply facts about patterns in the actual phenomena has been jettisoned.  

15. Propensity interpretations 

Attempts to locate probabilities ‘in the world’ are also made by variants of the propensity 

interpretation, championed by such authors as Popper (1959), Mellor (1971) and Giere (1973). 

Probability is thought of as a physical propensity, or disposition, or tendency of a given type of 

physical situation to yield an outcome of a certain kind, or to yield a long run relative frequency 

of such an outcome. This view is explicitly intended to make sense of single-case probabilities. 

According to Popper, a probability p of an outcome of a certain type is a propensity of a 

repeatable experiment to produce outcomes of that type with limiting relative frequency p. Given 

their intimate connection to limiting relative frequencies, such propensities presumably likewise 

violate countable additivity. Giere explicitly allows single-case propensities, with no mention of 

frequencies: probability is just a propensity of a repeatable experimental set-up to produce 

sequences of outcomes. This, however, creates the problem of deriving the desired connection 

between probabilities and frequencies. This quickly turns into a problem for inductive inference: 



it is unclear how frequency information should be brought to bear on hypotheses about 

propensities that we might entertain.  

16. The subjectivist interpretation: Orthodox Bayesianism 

Degrees of belief 

Subjectivism is the doctrine that probabilities can be regarded as degrees of belief, sometimes 

called credences. It is often called ‘Bayesianism’ thanks to the important role that Bayes’ 

theorem typically plays in the subjectivist’s calculations of probabilities, although this is yet 

another misnomer since all interpretations of probability are equally answerable to the theorem, 

and subjective probabilities can be defined without any appeal to it. Unlike the logical 

interpretation (at least as Carnap originally conceived it), subjectivism allows that different 

agents with the very same evidence can rationally give different probabilities to the same 

hypothesis.  

But what is a degree of belief? A standard analysis invokes betting behaviour: an agent’s 

degree of belief in X is p iff she is prepared to pay up to p units for a bet that pays 1 unit if X, 0 

otherwise (de Finetti 1937). It is assumed that she is also prepared to sell that bet for p units. 

Thus, opinion is conceptually tied to certain behavior. Critics argue that the two can come apart: 

an agent may have reason to misrepresent her opinion, or she may not be motivated to act 

according to her opinion in the way assumed. 

Bayesians claim that ideally rational degrees of belief are (at least finitely additive) 

probabilities. ‘Dutch Book’ arguments are one line of defense of this claim. A Dutch Book is a 

series of bets, each of which the agent regards as fair, but which collectively guarantee her loss. 

De Finetti (1937) proves that if your degrees of belief are not finitely additive probabilities, then 

you are susceptible to a Dutch Book. Equally important, and often neglected, is Kemeny’s 



(1955) converse theorem. A related defense of Bayesianism comes from utility theory. Ramsey 

(1926) and Savage (1954) derive both probabilities and utilities (desirabilities) from preferences 

constrained by certain putative ‘consistency’ assumptions. 

 

Updating Probability 

Suppose that your degrees of belief are initially represented by a probability function Pinitial(–

), and that you become certain of E (where E is the strongest such proposition). What should be 

your new probability function Pnew? The favored updating rule among Bayesians is 

conditionalization; Pnew is related to Pinitial as follows: 

(Conditionalization) Pnew(X) = Pinitial(X|E) (provided Pinitial(E) > 0) 

Conditionalization is supported by a ‘diachronic’ Dutch Book argument (see Lewis 1998): on 

the assumption that your updating is rule-governed, you are subject to a Dutch book if you do not 

conditionalize. Equally important is the converse theorem (Skyrms 1987). Jeffrey 

conditionalization allows for less decisive learning experiences in which your probabilities 

across a partition {E1, E2,...} change to {Pnew(E1), Pnew(E2), ..., }, where none of these values 

need be 0 or 1: 

Pnew(X) = 
i

∑ Pinitial(X|Ei)Pnew(Ei) 

(Jeffrey 1965). It is again supported by a Dutch book argument (Armendt, 1980). See Diaconis 

and Zabell (1986) for further probability revision rules. 

Orthodox Bayesianism can now be characterized by the following maxims: 

B1) Rationality requires an agent’s ‘prior’ (initial) probabilities to conform to the 

probability calculus. 



B2) Rationality requires an agent’s probabilities to update by the rule of (Jeffrey) 

conditionalization. 

B3) Rationality makes no further requirements on an agent’s probabilities. 

If orthodox Bayesianism is correct, then there is a sense in which Hume's problem of 

induction is immediately solved. Inductive inferences based on observational evidence are 

justified by the appropriate prior subjective probability assignments, suitably updated on that 

evidence. For example, by B3), rationality permits you to assign: 

Pinitial (the sun will rise on day 10001|the sun rises on days 1, 2, …, 10000) = 0.9999. 

Suppose your evidence is: 

 the sun rises on days 1, 2, …, 10000. 

Then conditionalizing on that evidence, as rationally requires according to B2), gives: 

Pnew(the sun will rise on day 10001) = 0.9999. 

Similarly, if your prior is of the right form, rationality requires you to assign extremely high 

probability to all marbles being green after a suitable course of experience with green marbles. 

And in general, the problem of justifying our inductive practices factors, according to Bayesians, 

into the problem of justifying the choice of prior, and the problem of justifying 

conditionalization; and they claim to have made good on both. So far, so good. However, non-

Bayesians will find this a Pyrrhic probabilistic victory. For orthodox Bayesianism equally allows 

priors that would license counterinductive and grue-some inferences, based on the same 

evidence.  

But Bayesianism is a theme that admits of many variations.  

17. Unorthodox Bayesianism 

Each of B1) – B3) has its opponents. It will prove convenient to revisit them in reverse order.  



The suspicion just raised is that orthodox Bayesianism is too permissive: it imposes no 

constraints on the assignment of priors, besides their conformity to the probability calculus. 

Rationality, the objection goes, is not so ecumenical. A standard defence (e.g., Savage 1954, 

Howson and Urbach 1993) appeals to famous ‘convergence-to-truth’, and ‘merger-of-opinion’ 

results. Roughly, their content is that in the long run, the effect of choosing one prior rather than 

another is attenuated: successive conditionalizations on the evidence will, with probability one, 

make a given agent eventually converge to the truth, and thus initially discrepant agents 

eventually come to agreement. In an important sense, at least this much inductive logic is 

implicit in the probability calculus itself. 

Unfortunately, these theorems tell us nothing about how quickly the convergence occurs. In 

particular, they do not explain the unanimity that we in fact often reach, and often rather rapidly. 

We will apparently reach the truth ‘in the long run’; but as Keynes quipped, “in the long run, we 

shall all be dead”. 

Against B3), then, there are more stringent Bayesians who hold this truth to be self-evident: 

Not all priors are created equal. They thus impose further constraints on priors. 

One such constraint is that they be regular, or strictly coherent: if P(X) = 1, then X = Ω (X is 

necessary/a logical truth)—see Shimony (1955). It is meant to guard against the sort of 

dogmatism that no course of learning by (Jeffrey) conditionalization could cure.  

We might also want to recognize the role that certain objective facts, or that certain ‘expert’ 

opinions, might have in constraining one’s subjective probabilities. Call probability function Q 

an expert function for P if the following condition holds: 

 (*) for all X, P(X| Q(X) = x) = x 



For example, one might conform one’s subjective probabilities to corresponding relative 

frequencies. With Q being the ‘relative frequency’ function, (*) becomes a version of the so-

called principle of direct probability. Or one might think that whatever objective chances might 

be, they are characterized by their role in conditionally constraining rational credence. With Q 

being the ‘objective chance’ function, (*) becomes a version of a principle that, suitably finessed, 

becomes Lewis’ (1980) Principal Principle. Or one might argue, as van Fraassen (1995) does, 

that epistemic integrity requires one ideally to regard one’s future opinions as being 

trustworthy—perhaps because of their having arisen from a rational process of learning. With Q 

being one’s probability function at some future time, (*) becomes a version of van Fraassen’s 

Reflection Principle. Q could also encapsulate the opinions of simply an expert—a person whom 

one trusts, for whatever reason. 

There have been various proposals for resuscitating symmetry constraints on priors, in the 

spirit of the classical and logical interpretations. More sophisticated versions of the principle of 

indifference have been explored by Jaynes (1968). The guiding idea is to maximize the 

probability function’s entropy, which for an assignment of positive probabilities p1, ..., pn to n 

possibilities equals –Σi pi log(pi). 

A set of events (or sentences) is exchangeable with respect to a given probability function if 

every event has the same probability, every conjunction of two events has the same probability, 

every conjunction of three events has the same probability, and so on. See Skyrms (1994) for an 

excellent discussion of generalizations of exchangeability, and their use in formulating various 

Goodmanian theses about projectability. Indeed, commonsense often (but not invariably) seems 

to require one’s probabilities to be exchangeable over ‘green’-like hypotheses, but not ‘grue’-like 

hypotheses. 



So there are many motivations for rejecting B3). But the suspicion at the end of the last 

section may still remain: Bayesianism, even with various of these bells and whistles added, is 

still too permissive. What is wanted is a justification of the 'good' inductive inferences, and no 

parallel justification of the 'bad'  ones. These principles do not seem to distinguish the good from 

the bad. Some of them, on the contrary, only seem to nurture the bad inferences—for example, 

where we might have hoped to kill off grue-like hypotheses, regularity keeps them all alive. 

Other principles can play both sides with equal ease: exchangeability, for instance, is 

characterized purely syntactically, so it can be deployed to vindicate grue-like inferences as well 

as green-like inferences. Still others, such as the Reflection Principle, seem to be neutral with 

respect to issues of induction. 

B2) also has its opponents. Some authors allow, and even insist upon, other rules for the 

updating of probabilities besides conditionalization. Jaynes advocates revision to the probability 

function that maximizes entropy, subject to the relevant constraints. 

And some Bayesians drop the requirement that rational probability updating be rule-

governed altogether—see van Fraassen (1990a), Earman (1992). Note, however, that in a sense 

this only makes the problem of induction worse. Given that the suggested constraints on the 

priors do not solve the problem, one might have hoped that the updating rule could take up the 

slack (and according to the proponents of the convergence results mentioned above, in the long 

run it does). But if the very requirement of an updating rule is abandoned, then it begins to look 

as if anything goes: if you want suddenly to jump to a probability distribution that assigns 

overwhelming probability to all marbles being grue, then you are apparently beyond reproach.  

The rejection of B1) is a large topic, and it motivates and can be motivated by some of the 

non-Kolmogorovian theories of probability, to which we now turn. 



18. Non-Kolmogorovian theories of probability 

A number of authors would abandon the search for an adequate interpretation of 

Kolmogorov’s probability calculus, since they abandon some part of his axiomatization. 

Some authors question its set-theoretic underpinnings. Note that the usual justifications of the 

probability axioms—Dutch Book arguments and so on—take for granted the sigma-field 

substructure, rather than justifying it as well. Fine (1973) argues that the requirement that the 

domain of the probability function be a sigma-field is overly restrictive. Some dispute the 

requirement that probabilities have numerical values. Fine sympathetically canvasses various 

theories of comparative probability, exemplified by statements of the form ‘A is at least as 

probable as B’. Then there are advocates of indeterminate or of vague probabilities, who 

represent probabilities not as single numbers, but as intervals, or more generally sets of numbers 

(e.g., Levi 1980; Jeffrey 1983; van Fraassen 1990b). Such vagueness might be vindicated by a 

set of constraints that go beyond those of the probability calculus, but that fall short of the 

Carnapian ideal of fixing a unique probability function. 

Some dispute the usual constraints on the numerical values. Kolmogorov’s probability 

functions are real-valued. A number of philosophers (e.g., Lewis 1980, Skyrms 1980) allow 

probabilities to take values from the real numbers of a nonstandard model of analysis—see 

Robinson (1966) or Skyrms (1980) for the construction of such a model. In particular, they allow 

probabilities to be infinitesimal: positive, but smaller than every positive (standard) real number. 

This can be motivated by a desire to respect both regularity and certain symmetries in infinite 

probability spaces. Meanwhile, physicists such as Dirac, Wigner, and Feynman have 

countenanced negative probabilities, and Feynman and Cox have flirted with complex-valued 

probabilities. (See Mückenheim (1986) for references.) Renyi (1970) allows probabilities to 



attain the ‘value’ ∞. We may also want to allow logical/necessary truths to be assigned 

probability less than one, perhaps to account for the fact that mathematical conjectures may be 

confirmed to varying degrees—see, e.g. Polya (1968). Thus, mathematics too might be 

susceptible to induction (to be distinguished from ‘mathematical induction’, a deductive 

argument form!). 

Kolmogorov’s most controversial axiom is undoubtedly continuity—that is, the ‘infinite part’ 

of countable additivity. He regarded it as an idealization that finessed the mathematics, but that 

had no empirical meaning. As we have seen, according to the classical, frequency, and certain 

propensity interpretations, probabilities violate countable additivity. De Finetti marshals a battery 

of arguments against it (in the name of subjectivism, but his arguments may be regarded as more 

general).  

Various non-additive theories of probability that give up even finite additivity have been 

proposed—for example, Dempster-Shafer theory, which some regard as codifying the notion of 

‘weight of evidence’ (Shafer 1976). So-called “Baconian probabilities” represent another non-

additive departure from the probability calculus. The Baconian probability of a conjunction is 

equal to the minimum of the probabilities of the conjuncts. L.J. Cohen (1970, 1977) regards them 

as appropriate for measuring inductive support. See Ghirardato (1993) for a survey of non-

additive measures of uncertainty, and Howson (1995) for further references. 

Lastly, various authors, rather than axiomatizing unconditional probability and defining 

conditional probability therefrom, take conditional probability as primitive and axiomatize it 

directly; see Spohn (1986). 



19. Some future avenues of research 

Having discussed various landmarks of past work in induction and probability, we find 

ourselves now in the curiously reflexive position of predicting what future work in these areas 

will look like. Suitably cautioned by the very nature of our subject, and with appropriate degrees 

of uncertainty, here are some of our best bets. 

We think that there is still much research to be done within a broadly Bayesian framework. 

There are already signs of the rehabilitation of logical probability, and in particular the principle 

of indifference, by authors such as Stove (1986), Bartha and Johns (forthcoming), Festa (1993) 

and Maher (2000, forthcoming). This will surely resonate with developments in the theory of 

infinitesimals, for example within the system of ‘surreal numbers’ (Conway 1976, Ehrlich 

forthcoming). Relevant here will also be advances in information theory, randomness and 

complexity theory (see Fine 1973, Li and Vitanyi 1997), and approaches to statistical model 

selection, and in particular the ‘curve-fitting’ problem that attempt to codify simplicity—e.g., the 

Akaike Information Criterion (see Forster and Sober 1994), the Bayesian Information Criterion 

(see Kieseppä forthcoming), Minimum Description Length theory (Rissanen 1999) and 

Minimum Message Length theory (Wallace and Dowe 1999). These may also shed light on the 

time-honored but all-too-nebulous intuition that ‘green’-like hypotheses are somehow ‘simpler’ 

than ‘grue-like’ hypotheses. 

Probability theory traditionally presupposes classical set theory/classical logic. There is more 

work to be done on 'non-classical' probability theory. Bayesians may want to enrich their theory 

of induction to encompass logical/mathematical learning in response to the so-called 'problem of 

old evidence' (see Zynda 1995), and to allow for the formulation of new concepts and theories. 

We also see fertile connections between probability and logic that have been explored under the 



rubric of 'probabilistic semantics' or 'probability logic'—see Hailperin (1996) and Adams (1998). 

Roeper and Leblanc (1999) develop such probabilistic semantics for primitive conditional 

probability functions. More generally we envisage increased attention to the theory of such 

functions (see, for instance, Festa 1999 for a treatment of Bayesian confirmation theory which 

takes such functions as primitive, and Hájek forthcoming for general arguments in favor of such 

functions). Further criteria of adequacy for subjective probabilities will be developed—perhaps 

refinements of ‘scoring rules’ (Winkler 1996), and more generally, candidates for playing a role 

for subjective probability analogous to the role that truth plays for belief. There will be more 

research on the theory of expert functions—for example, in the aggregation of opinions and 

preferences of multiple experts. This problem is well known to aficionados of the risk-

assessment literature, which has yet to be mined by philosophers—see Kaplan (1992). 

We expect that non-Bayesian research programs will also flourish. Non-additive probabilities 

are getting impetus from considerations of ‘ambiguity aversion’ (Ghirardato 2001) and 

‘plausibility theory’ (Hild 2001). Formal learning theory (see Kelly forthcoming) is also gaining 

support, and more broadly, philosophers will find much interesting work on induction and 

learning in the computer science and artificial intelligence literature. And there is a need for 

more cross-fertilization between Bayesianism and classical statistics, and its recent incarnation in 

the theory of error statistics (Mayo 1996). For example, hypothesis testing at a constant 

significance level has long been known to be inconsistent with Bayesian inference and decision 

theory. Recent work by Schervish, Seidenfeld and Kadane (forthcoming) shows that such 

‘incoherence’ is a matter of degree. Moreover, in light of work in the economics literature on 

‘bounded rationality’, the study of degrees of incoherence is likely to bear fruit. We foresee 

related attempts to ‘humanize’ Bayesianism—for example, the further study of vague probability 



and vague decision theory. And classical statistics, for its part, with its tacit trade-offs between 

errors and benefits of different kinds, needs to be properly integrated into a more general theory 

of decision.  

Decision theory and the theory of induction will profit from insights in the causal modeling 

literature. For example, the so-called ‘reference class problem’ arises because a given event-

token can typically be placed under indefinitely many event-types; this is what gives the various 

problems of induction their teeth. But progress can be made when the relevant causes are 

identified, and techniques along the lines of those developed by Pearl (2000) and Spirtes, 

Glymour and Scheines (1993) can be appealed to. These techniques will doubtless be finessed. 

More generally, in this brave new world of inter-disciplinarity and rapid communication, 

inferential methods developed within one field are increasingly likely to be embraced by 

practitioners of another.2 
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